chico63 написал :
правда не совсем понятно, как именно крутится сам гена
кмк - гены там вобще нет - это же "рабочая модель" до реальной выработки ЭЭ може вобще не дойти - дизайнерски оно конечно прикольно но в реале скорее всего от знакопеременной нагрузки раздолбает ее в течение месяца...
chico63 написал :
Мне вообще абсолютно по-барабану "среднегодовая мощность"
ну эт Вы зря - среднегодовая мощнось - отправная точка (фундамент) для расчета и строительства Ветроустановок если нужен экономически оправданный результат а не рабочая модель.
johnlc написал :
ну эт Вы зря - среднегодовая мощнось - отправная точка (фундамент) для расчета и строительства Ветроустановок если нужен экономически оправданный результат
У меня тоже некий ОПРАВДАННЫЙ результат, вернее требования моего личного ТЗ . Поэтому, просьба - прочитайте ещё раз внимательно именно МОИ ЛИЧНЫЕ требования к ветряку , может тогда и не будет лишних вопросов и раздумий.
Вот товарищ ГОСТ понял, поэтому и вполне адекватно советует и конкретизирует именно в соответствии с требованиями конкретного ТЗ, а не вААбще, исходя из типа общепринятого устоявшегося мнения насчёт ветряков вообще.
Весь цинус - именно в мелких КОНКРЕТНЫХ ньюансах ;)
chico63 написал :
Поэтому, просьба - прочитайте ещё раз внимательно именно МОИ ЛИЧНЫЕ требования к ветряку
chico63 написал :
Это для резервного питания освещения и ноутбука или небольшого, 21" ЖК-ТВ на случай внезапного отключения э/энергии. Такое бывает у нас очень редко, но иногда сильно "метко" блиннафик
мое мнение - описанный в ТЗ ветряк совершенно для этого не нужен - дешевле и проще компенсировать саморазряд резервных АКБ непосредственно из электросети, (у меня для подобного стоит SmartUPS1000 + 2 65ач АКБ)а с зарядкой АКБ в отсутствие сети и работающих потребителях у ветряка не хватит средней мощности из за малых размеров.
johnlc написал :
мое мнение - описанный в ТЗ ветряк совершенно для этого не нужен - дешевле и проще компенсировать саморазряд резервных АКБ непосредственно из электросети
Я в целом тоже так думаю, но поэкспериментировать охота - тем более что есть площадка для крепления ветряка и по стоимости затраты будут только на мотор-колесо. Ну если не получится ничего , то не страшно. Потерь практически никаких, а моторчик можно будет и для других целей использовать.
Что получилось?
Почти то, что они пишут. На скорости ветра 7 м/сек выдает 410 Вт. Больше ветра не было. На ветре 3 м/сек - примерно 40-60 Вт. Гоняю его уже 1 месяц.
Прилагаю выдержки из патента 2451826
ВЕТРОВАЯ СИСТЕМА ДЛЯ ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ ВОЗДУШНЫМИ ЗМЕЯМИ, И СПОСОБ ПРОИЗВОДСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ
Формула изобретения
Ветровая система (1) для преобразования энергии, содержащая:
по меньшей мере, один воздушный змей (2), выполненный с возможностью управления им с земли, который погружен, по меньшей мере, в одну струю (W) ветра;
по меньшей мере, один модуль (5), выполненный с возможностью поступательного перемещения, по меньшей мере, по одной направляющей (6, 7), размещенной у земли, причем упомянутый модуль (5) соединен посредством, по меньшей мере, одного троса (4) с воздушным змеем (2); воздушный змей (2) выполнен с возможностью управления им при помощи упомянутого модуля (5), с целью буксирования этого модуля (5) по направляющей (6, 7) и выполнения преобразования энергии ветра в электрическую энергию при помощи, по меньшей мере, одной системы генерации, работающей совместно с упомянутыми модулем (5) и направляющей (6, 7); и трос (4) выполнен с возможностью как передачи механической энергии от воздушного змея (2) и к этому змею (2), так и управления траекторией полета упомянутого воздушного змея (2),
отличающаяся тем, что система генерации содержит, по меньшей мере, один генератор/двигатель (20), выполненный с возможностью преобразовывать энергию ветра в электрическую энергию при помощи движения модуля (5) относительно направляющей (6, 7).
Ветровая система (1) по п.1, отличающаяся тем, что воздушный змей (2) изготовлен из полужесткого материала, снабжен облегченной рамой и выполнен в форме жестких крыльев планера, дополнительно снабжен ромбовидными деталями из полимеров, и полужесткость воздушного змея (2) асимметрична в направлениях двух габаритов этого змея (2), чтобы сохранить боковую гибкость.
Ветровая система (1) по п.1, отличающаяся тем, что, по меньшей мере, два из воздушных змеев (2) соединяют последовательно в многослойную конструкцию, чтобы получить цепочку (3), соединенную посредством, по меньшей мере, одного из тросов (4) с одним из упомянутых модулей (5).
Ветровая система (1) по п.1, отличающаяся тем, что тросы (4), соединяющие воздушные змеи (2) в цепочке (3), встроены в стенки этих змеев (2), и стенки воздушных змеев (2) цепочки (3) представляют собой соединительный элемент между этими змеями (2), причем эти стенки предпочтительно имеют сечение в виде аэродинамического профиля.
Ветровая система (1) по п.1, отличающаяся тем, что сечение троса (4) выполнено переменным, в частности, это сечение меньше рядом со змеем (2) и больше рядом с упомянутым модулем (5), и изменение сечения троса (4) является непрерывным или происходит поэтапно на величину смещения.
Ветровая система (1) по п.1, отличающаяся тем, что сечение на участке троса, ближайшем к воздушному змею (2), аэродинамически моделируют, чтобы обеспечить асимметричный подъем, причем этот трос (4) в предпочтительном случае покрывают экструдированной оболочкой с сечением в виде звезды.
Ветровая система (1) по п.1, отличающаяся тем, что она содержит интеллектуальную систему управления, выполненную с возможностью автоматически управлять воздушным змеем (2) при его движении по траектории полета, причем эта ветровая система (1) в предпочтительном случае содержит систему питания, работающую совместно с интеллектуальной системой управления для контроля над накоплением и поставкой электрической энергии.
Ветровая система (1) по п.7, отличающаяся тем, что интеллектуальная система управления снабжена набором датчиков, размещенных на упомянутом воздушном змее (2), причем эти датчики, размещенные на воздушном змее (2), в предпочтительном случае имеют автономное питание, и в предпочтительном случае посылают информацию в беспроводном режиме в наземные компоненты интеллектуальной системы управления; при этом интеллектуальная система управления в предпочтительном случае снабжена набором наземных датчиков.
Ветровая система (1) по п.1, отличающаяся тем, что воздушные змеи (2) снабжены исполнительной и стабилизирующей системой для маневра бокового скольжения.
Ветровая система (1) по п.9, отличающаяся тем, что исполнительная и стабилизирующая система содержит, по меньшей мере, один интерцептор, причем этот интерцептор в предпочтительном случае приводят в действие посредством систем с автономным питанием, либо в предпочтительном случае приводят в действие посредством систем, питание которых осуществляют при помощи, по меньшей мере, одного кабеля, идущего от упомянутого модуля (5) к воздушному змею (2), при этом системы, приводящие в действие интерцептор, являются в предпочтительном случае пьезоэлектрическими и содержат полимеры с эффектом запоминания формы, либо содержат волокна из металлических сплавов с эффектом запоминания формы, при этом системы, приводящие в действие интерцептор, в предпочтительном случае принимают команды в беспроводном режиме от интеллектуальной системы управления.
:
Ветровая система (1) по п.9, отличающаяся тем, что исполнительная и стабилизирующая система для маневра бокового скольжения содержит, по меньшей мере, один направленный боковой выступ, причем направленные боковые выступы в предпочтительном случае расположены на воздушном змее (2) в поперечном направлении относительно давления струи (W) ветра, и их убирают за счет изгиба, чтобы не изменять КПД воздушного змея (2), при этом во время маневра бокового скольжения направленные боковые выступы в предпочтительном случае поднимаются, приводимые в действие потоком.
Ветровая система (1) по п.1, отличающаяся тем, что упомянутый модуль (5) снабжен, по меньшей мере, одной тележкой (11), поступательно перемещающейся вдоль упомянутой направляющей (6, 7).
Ветровая система (1) по п.12, отличающаяся тем, что тележка (11) имеет аэродинамическую форму, причем на этой тележке (11) в предпочтительном случае установлены компоненты, предназначенные для управления воздушным змеем (2) и хранения тросов (4), либо в предпочтительном случае установлены компоненты, предназначенные для преобразования энергии.
Ветровая система (1) по п.1, отличающаяся тем, что она содержит, по меньшей мере, одну систему (8) возврата в исходное положение воздушного змея (2).
Ветровая система (1) по п.1, отличающаяся тем, что направляющая (6) образует замкнутый контур, в предпочтительном случае выполненный круговым или эллиптическим, причем главная ось упомянутого эллиптического контура в предпочтительном случае перпендикулярна направлению, в котором дует струя (W) ветра.
Ветровая система (1) по п.1, отличающаяся тем, что направляющая (6) снабжена, по меньшей мере, одной зубчатой рейкой (15), причем зубчатую рейку (15) в предпочтительном случае устанавливают на направляющей (6) таким образом, чтобы ее зубчатая поверхность была перпендикулярна плоскости этой направляющей (6) и ориентирована в направлении центра замкнутого контура, образованного этой направляющей (6).
Ветровая система (1) по п.1, отличающаяся тем, что тросы (4) снабжены автоматической системой соединения/разъединения, при помощи которой эти тросы (4) можно обратимым образом соединять с воздушным змеем (2) и отсоединять от него.
Ветровая система (1) по п.1, отличающаяся тем, что она содержит для каждого из упомянутых модулей (5) систему демпфирования пиковых значений силы для тросов (4), которая в предпочтительном случае снабжена, по меньшей мере, одним амортизированным противовесом, поднимаемым от земли и выполненным с возможностью поступательного перемещения по вертикали, причем противовес в предпочтительном случае поднимают от земли, благодаря натяжению упомянутого троса (4).
Ветровая система (1) по п.1, отличающаяся тем, что она содержит для каждого из упомянутых модулей (5) систему создания трения в тросах (4), которая в предпочтительном случае снабжена, по меньшей мере, одним шкивом, связанным с линейной направляющей, и, по меньшей мере, одной пружиной, связанной у одного своего конца с упомянутым шкивом, и у другого своего конца - с упомянутой тележкой (11), причем пружина сжимается из-за натяжения троса (4).
Ветровая система (1) по п.1, отличающаяся тем, что она содержит для каждого из упомянутых модулей (5) систему (22) наматывания/разматывания упомянутого троса (4), которая в предпочтительном случае содержит, по меньшей мере, четыре первых лебедки (24) для каждого из тросов (4), которые размещены на двух уровнях и имеют параллельные оси вращения, причем первые лебедки (24) соединены, по меньшей мере, с одним первым электродвигателем (28), управляемым интеллектуальной системой управления, который в предпочтительном случае также представляет собой электрический генератор.
Ветровая система (1) по п.41, отличающаяся тем, что первые лебедки (24) соединены с первым электродвигателем (28) через зубчатые колеса и за счет размещения между ними, по меньшей мере, одного редуктора эпициклоидного типа, причем каждая из этих первых лебедок (24) в предпочтительном случае соединена с одним из первых электродвигателей (28) за счет размещения между ними, по меньшей мере, одного редуктора эпициклоидного типа; трос (4) в предпочтительном случае наматывают вокруг каждой из упомянутых первых лебедок (24) на три четверти окружности этих лебедок; поверхность первых лебедок (24) в предпочтительном случае выполнена таким образом, чтобы принимать трос (4) и увеличивать площадь контакта; первые лебедки (24) в предпочтительном случае имеют разную шероховатость поверхности; система (22) наматывания/разматывания в предпочтительном случае содержит лебедку для каждого из упомянутых тросов (4), где вокруг этой лебедки трос (4) наматывают, выполняя ограниченное число оборотов, в результате чего имеется один слой витков, при этом система (22) наматывания/разматывания в предпочтительном случае содержит для каждого из упомянутых тросов (4), по меньшей мере, две пары обращенных друг к другу направляющих средств, которые толкаются поршнями, и внутрь каждого из которых вставлен упомянутый трос (4).
Ветровая система (1) по п.1, отличающаяся тем, что она содержит для каждого из упомянутых модулей (5), по меньшей мере, одну систему передачи, выполненную с возможностью направлять тросы (4) к воздушному змею (2), причем система передачи в предпочтительном случае содержит: по меньшей мере, один шкив (35), смонтированный на тележке системы возврата в исходное положение и выталкивания воздушного змея (2); по меньшей мере, один неподвижный шкив (33), непосредственно связанный с упомянутым модулем (5); по меньшей мере, один шкив для каждой из систем демпфирования пиковых значений силы для тросов (4); по меньшей мере, один шкив для каждой из систем создания трения в тросах (4); и, по меньшей мере, один шкив (34), смонтированный на ползунах (27) модулей (26) управления тросами (4), при этом ползун (27) в предпочтительном случае скользит вдоль направляющей параллельно оси вращения лебедки (25) системы (23) хранения; скольжением ползуна (27) вдоль упомянутой направляющей в предпочтительном случае управляют при помощи скользящего механизма одновременно с вращением второй лебедки (25); и скользящий механизм в предпочтительном случае приводят в действие при помощи четвертого электродвигателя, управляемого интеллектуальной системой управления.
Ветровая система (1) по п.7, отличающаяся тем, что система генерации электричества также работает как двигатель, причем эту систему генерации приводят в действие за счет поступательного перемещения упомянутого модуля (5) по направляющей (6), когда она работает как генератор; и этой системой генерации управляют при помощи интеллектуальной системы управления, когда она работает как двигатель.
Ветровая система (1) по п.12, отличающаяся тем, что, по меньшей мере, один генератор/двигатель (20) приводится в действие непосредственно за счет вращения, по меньшей мере, одного из колес (16) тележки (11) модуля (5), причем упомянутая система (1) в предпочтительном случае содержит для каждого из упомянутых модулей (5), по меньшей мере, одно зубчатое колесо (18), которое входит в зацепление с зубчатой рейкой (15) направляющей (6) и катится по ней; по меньшей мере, один генератор/двигатель (21) в предпочтительном случае приводится в действие непосредственно за счет вращения, по меньшей мере, одного из зубчатых колес (18) зубчатой рейки (15); и для каждого из упомянутых модулей (5) система генерации в предпочтительном случае содержит, по меньшей мере, один реверсивный магнитный линейный двигатель, выполненный с возможностью работать также и как генератор.
Ветровая система (1) по п.1, отличающаяся тем, что каждый из упомянутых модулей (5) снабжен постоянными магнитами, причем эти постоянные магниты индуцируют токи в электромагнитах, которыми снабжена направляющая (6), таким образом, чтобы эти токи частично создавали магнитное поле, противоположное индуцирующему полю, заставляя этот модуль (5) левитировать, при этом в предпочтительном случае в качестве вспомогательного средства для постоянных магнитов используют соленоиды из сверхпроводника.
Способ производства электрической энергии при помощи ветровой системы (1) по п.41, отличающийся тем, что для каждого из воздушных змеев (2) этот способ содержит следующие этапы, в соответствии с которыми:
управляют траекторией полета воздушного змея (2) таким образом, чтобы этот воздушный змей (2) двигался в поперечном направлении относительно направления струи (W) ветра, при этом воздушный змей (2) натягивает тросы (4), соединенные с модулем (5) ветровой системы (1), заставляют этот модуль (5) поступательно перемещаться по направляющим (6) благодаря эффекту буксирования, и удаляют воздушный змей (2) на расстояние от модуля (5) за счет разматывания тросов (4) посредством первых лебедок (24), приводимых в действие при помощи первых электродвигателей (28);
управляют траекторией полета воздушного змея (2) таким образом, чтобы этот воздушный змей (2) двигался в направлении, совпадающем с направлением струи (W) ветра, при этом воздушный змей (2) натягивает тросы (4), соединенные с модулем (5) ветровой системы (1), заставляют этот модуль (5) поступательно перемещаться по направляющим (6) благодаря эффекту буксирования, и приближают воздушный змей (2) к модулю (5) за счет повторного наматывания тросов (4) посредством первых лебедок (24), приводимых в действие при помощи первых электродвигателей (28);
управляют траекторией полета воздушного змея (2) таким образом, чтобы этот воздушный змей (2) двигался в поперечном направлении относительно направления струи (W) ветра, при этом воздушный змей (2) натягивает тросы (4), соединенные с модулем (5) ветровой системы (1), заставляют этот модуль (5) двигаться по направляющим (6) благодаря эффекту буксирования, и удаляют воздушный змей (2) на расстояние от модуля (5) за счет разматывания тросов (4) посредством первых лебедок (24), приводимых в действие при помощи первых электродвигателей (28);
управляют траекторией полета воздушного змея (2) таким образом, чтобы этот воздушный змей (2) двигался в направлении, противоположном направлению струи (W) ветра, без создания какого-либо эффекта торможения для поступательного перемещения модуля (5) ветровой системы (1), за счет повторного наматывания тросов (4) посредством первых лебедок (24), приводимых в действие при помощи первых электродвигателей (28); и
повторяют предыдущие этапы,
причем каждый из упомянутых этапов или последовательность этих этапов в предпочтительном случае выполняют автоматически при помощи интеллектуальной системы управления.
Способ производства электрической энергии при помощи ветровой системы (1) по п.41, отличающийся тем, что первые двигатели (28) снабжены также функциями генераторов, производящих электричество посредством вращения первых лебедок (24).
В принципе, система состоит из кольцевой железной дороги, по которой движутся вагоны.
Каждый вагон – это цепочка змеев в форме крыла параплана. Цепочка высотой до 15 км.
В вагоне электрогенератор, который крутится за счет того, что цепочка тянет канаты, намотанные на барабан лебедки, двигатель которой работает в режиме генератора.
Кроме того, цепочки тащат вагон по кругу железной дороги.
А на колесах вагонов стоят электрогенераторы.